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ANALYSIS OF THE PROCESSES OF HEAT TRANSFER 
WITH PERIODIC INTENSITY WITH ALLOWANCE FOR 
TEMPERATURE FLUCTUATIONS IN THE HEAT CARRIER 

Yu. B. Zudin  UDC 536.24 

A previously developed method of attalysis of the processes of heat transfer with periodic intensity is 
generalized to the case of simultaneous fluctuations of the temperatures of the wall and the liquid. A 
final expression for the dependence of the co~:fficient of conjugation on the generalized parameter of 
the problem is ohtained. 

Processes of Heat Transfe r  with Periodic Intensity. For a large class of  processes of  convective heat 
transfer we can indicate the following two characteristic features: 1) periodic or random fluctuations of  the 
parameters of the heat carrier (velocity, pressure, temperature, vapor content, phase interface); 2) mutual effect 
of the averaged and fluctuating temperature fields in the heat carrier and the wall (a conjugate convective-con- 
ductive character of the heat transfer). Account for them was a basis of  the approximate theory of the proc- 
esses of  heat transfer with periodic intensity suggested in [ I ], where a boundary-value problem for the equation 
of heat conduction in a wall with a periodic boundary condition of the third kind on the heat-exchange surface 
was considered as a simplified scheme of a conjugate problem. The effect of the heat carrier on the wall is 

replaced by the "true" coefficient of heat transfer ~: 

qw (t) 

its value averaged over a period is 

qw 

In a traditional heat-transfer experiment and applied calculations, the average coefficient of heat trans- 

fer means 

(o~ (3) 
~m -- (,Ow _ 0"~,) " 

It is convenient to characterize the quantitative difference in the values of o~ averaged according to 

laws (2) and (3) by the "coefficient of conjugation" 

%,  (4) 
(a)" 
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Work [1] sought to determine the coefficient of conjugation e for various thermophysical properties and 
thicknesses of the wall for O= = const. This case is physically consistent with flow of a heat carrier of a 
constant mass-mean temperature past a wall of finite thermal conductivity. 

The present work is devoted to generalization of the approach presented in [1] to the case of simulta- 
neous fluctuations of the temperatures of the wall and the liquid. 

We represent all the quantities entering (1) as sums of stationary and fluctuating components: 

~ = ( ~ ) + o t ' -  Ow=(Ow)+Ow: O~=(O~>+O~" q w = ( q w ) + q w  . 

Introducing dimensionless fluctuations of the quantities 

_ ,  ~ '  - ,  o ;  - ,  o ~  - ,  qw 
= (ot---~ " Ow = (Ow) - (0~} ; O~ - (Ow} _ (O~)' qw - (qw)' 

we rewrite the boundary condition of the third kind (1) in the tbrm 

(i  + a ' ) (J  + ~ ; -  ~ i )  = ~ (l +~;). (5) 

Averaging (5) over a period yields 

= l + <a' ~w> - {~." ~5>.  
(6) 

According to (6), the effect of problem conjugation - the difference of the experimental value of the 
coefficient of heat transfer am from the true averaged value (c~) - is de~rmined by the correlations of the 
fluctuations of the ~ue coefficient of heat transfer ~', the wall temperature Ow, and the mass-mean temperature 
of the heat carrier 0 - .  The limits of variation of E are determined by the double inequality proved in [l] (in 
general torm) 

(7) 

It tbllows from (7) that the "experimental" coefficient of heat transfer is smaller than the "true" averaged one 
(equality of them is reached in the limiting case of an infinitely heat-conduct~g wall). 

Constant Mass-Mean Tempera tu re  of the Heat Carr ier .  Assuming O- = 0 in (5) and (6), we obtain 
the limiting case O~ = const studied in [1]: 

(l + ~') (1 + Ow) =~ (1 + ~ ) ;  (8) 

c = 1 + (~ '  Ow)- (9) 

Here, as the intensity of the heat transfer increases (~' > 0), the wall "is cooled" (Ow < 0), and as it decreases 
(~ < 0), the wall, conversely, "is superheated" (#'w > 0). As a consequence, we always have from (9) 

{~w>_<o ; ~_<1. (lo) 

Constant Wall Temperature .  Assuming Ow = 0 in (5) and (6), we obtain the limiting case 0w = 
cons [ :  

(1 + ~') (1 - 0 - )  = ~ (1 + qw)" 
(l l)  
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= 1 - ( ~ '  O - ) ,  (12) 

which physically corresponds to evaporation of  a thin fi lm o f  liquid from the surface of an infinitely heat-con- 
ducting wall (provided that the mass flow rate of  the vapor  at  both the inlet to and the outlet from the channel 
is kept constant). Here, an increase in the intensity of the heat  transfer (~' >_ 0) leads to an increase in the mass 
flow rate of  transverse injection of the vapor  into the flow core .  This results in an increase in the density of  
the vapor and, consequently,  in its pressure. The pressure increase,  in turn, is accompanied by an  increase in 

the temperature of  vapor  saturation (O-_> 0). The temperature  o f  the saturated vapor decreases ( 0 "  _< 0) with 
the heat-transfer intensity (~_< 0) by virtue of  the same reasons.  Thus, we a lways have from (12) 

( ~ ' 0 - ) > 0 ;  E <  1 . ( 1 3 )  

E x a c t  S o l u t i o n s  f o r  the  L i m i t i n g  C a s e s .  W e  s p e c i f y  a stepwise law o f  fluctuations of  the true coeffi- 

cient of  heat transfer 

- ,  . 

- 2 "  a = ( I - b ) -  2 - z < z ° :  ~ ' = ( l + b )  (14) 

The minimum possible  value of the coefficient of  conjugat ion is determined by the left-hand side of  

inequality (7): 

Emi n ---- i - b 2. (15) 

First, we consider the limiting case Ow = const. 
The variations in the vapor density Pv in the vo lume o f  the heat carrier  are related to the fluctuations 

of the heat-flux density by 

dPv 4qw (16) 

dz  rD  " 

Expressing the pressure of  the vapor (an ideal gas) f rom the equation of  state (in view of the Truton 
role) and using a linear approximation of  the saturation curve,  f rom (16) we obtain the following equation /br 

the variation in the heat-carr ier  temperature: 

dO" O~qw 
= 0 .4  - -  

d'c rDPv  

(17) 

The solution of  the system of equations (1 l), (12), (14), and (17) has the following form: 

O<_z <'q_2 : 
2 

(1 + b )  [! - e x p  ( - 2 A ) ] - 2 b  [1 - e x p  [ -  (1 + b )  A]] exp [(1 - h )  t] 
O = 

( 1 - h 2) I 1 - exp  ( -  2A)] 

~-~° < -c < ,to : 
2 

(1 - b) [ 1 - exp ( -  2A)] + 2b ( 1 - exp [ -  ( 1 - b) A]) exp [ -  ( 1 + b) t] 

O - ( 1 - b 2) [ 1 - exp  ( -  2A)] ' 

(18) 

245 



( 1 - 192) 2 A th A (19) 
E-- chb  " 

( l - b  2) A t h A - 2 b  ? 1 chA J 
/ 

Here 0 = (o~)(0,~- O~)/(qw) is the dimensionless drop in temperature; t = 0.8(o~)'c/(rp~D) is the dimensionless 

time; 

0.4 (or) x o (20) 
A -  

rPvD 

is the main parameter of  the problem (the parameter of conjugation). 
We now consider the limiting case O~ = const in the approximation of  a "thin wall": 8 << "~awX0. It is 

of interest to note that here we again obtain solution (18) and (19) for the temperature drop and E, where the 

dimensionless time and the parameter of conjugation are written in the form 

(or) "c 0 (21 ) 
t = 2 (or} x/(PwCw8 ) ; A - 

PwCw 8 " 

Approximate Solution for the General Case. In [1], the exact analytical solution for the coefficient 
of  conjugation in the limiting case t ~  = const written in the form of the sum of  an infinite functional series is 

obtained. Different versions of  an approximate solution are suggested in [2-5]; in particular, it is shown in 
[2-4] that E can be represented in the form of (19) with the parameter of conjugation 

477, (a) 8 
A - ""wX° cth - -  (22) 

kw 4aw~0 

When 8 << X/awry), asymptotic tbrm tbr an infinitely thin wall (21) tbllows from (22), and when 8 >> X/awXo 
- the asymptotic tbrm for a semiinfinite mass 

A (23) 

Application of the approximate method of [5] to the case under consideration allows the following gen- 
eralized value of the parameter of  conjugation in the exact solution (19) to be written: 

Relations (19) and (24) allow one to calculate the coefficient of conjugation in the general case of  the 
presence of temperature fluctuations in the wall and the heat carrier. As follows from (7) and (15), the value 

of ~ varies within the limits 

1 - b  2 < c  < 1,  (25) 

and therefore, it is convenient to represent its dependence on the parameter of  conjugation in the "reduced 

f o r m "  

2 ( l - h  2) l chA ) 
E -- Emi n (26) 

- ( cbbZ) 
l--~;min ( l - b 2 ) A t h Z - 2 b  2 1 cla-A- ) 
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Fig. 1. Dependence of the reduced coefficient of conjugation on the gen- 
eralized parameter: 1) relation (27) (h--> 0); 2) relation (28) (h---> 1). 

When b ~ (I (the case of degeneration of the fluctuations of the true coefficient of heat transfer), it 
follows from (26) that 

N 2 A 
: ~- th ~-.  (27) 

When b--> 1 (the case of the maximum possible fluctuations of the true coefficient of heat transfer), 
we obtain 

~,_ 4 (28) 
3 +A cthA " 

Figure 1 shows the limiting dependences ~'(A) according to (27) and (28). The entire dependences ~'(A) 
fbr region (25) lie within the indicated limits. 

The work was carried out with financial support from the Russian Fund for Fundamental Research, 
grant No. 98-02-178 ! 2. 

N O T A T I O N  

"c, time; "c0, period of the fluctuations; O, temperature; q, heat-flux density; a, true coefficient of heat 
transfer; (00, true averaged coefficient of heat transfer; ~n,  experimental coefficient of heat transfer; e, coeffi- 
cient of conjugation; b, dimensionless amplitude of the fluctuations of the true coefficient of heat transfer; 9v, 
vapor density; Pw, Cw, ?~w, and aw, density, specific heat capacity, thermal conductivity, and thermal diffusivity 
of the wall, respectively; r, specific heat of the phase transition; D, hydraulic diameter of the channel; 8, wall 
thickness. Subscripts: w, conditions on the wall; oo, conditions in the heat carrier ("at infinity"); ( ) ,  averaging 
over a period of the fluctuations; prime, fluctuating quantity; tilde, dimensionless quantity. 
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